Skip to main content
Log in

A review on the applications of micro-/nano-encapsulated phase change material slurry in heat transfer and thermal storage systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In modern heat transfer systems, thermal storage not only causes the balance between demand and supply, but also improves the heat transfer efficiency in these systems. In the present study, a comprehensive review of the applications of micro- or nano-encapsulated phase change slurries (MPCMs/NPCMs), as well as their effects on thermal storage and heat transfer enhancement, has been conducted. MPCMs/NPCMs have a myriad of applications and various usages such as pipe and channel flows, photovoltaic/thermal, solar heaters, air conditioning systems, storage tanks and heat pipes that have been categorized and studied. It was found that there are many advantageous adding MPCM/NPCM to the base fluid. The most important effect is that the addition of PCMs to the base fluid can intensify the capacity of energy absorption in the base fluid. These materials can absorb a high proportion of received energy by changing their phase and prevent temperature increment of the base fluid. Thereupon, the specific heat of the fluid in the presence of the micro-/nano-capsules increases. Moreover, in most studies reviewed, heat transfer coefficient and Nusselt number increase by the addition of micro-/nano-capsules to the base fluid. Also, the addition of MPCM/NPCM to the base fluid could make this material pumpable, although increment in the concentration of micro-/nano-capsules raises the viscosity of the working fluid and thereupon the pumping power. On the other hand, for a same heat load, the pumping power decreases due to the lower required flow rate in comparison with pure working fluid. The most important factor that must be considered in the application of MPCMs/NPCMs is the complete phase change of the material. Given the favorable thermal and fluid characteristics of MPCMs/NPCMs, the utilization of these materials could be a promising method to transfer heat and store it with high efficiency and low pumping power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Abbreviations

Cp:

Heat capacity (J g−1 k−1)

h :

Heat transfer coefficient (W m−2 K−1)

K :

Thermal conductivity (W m−1 K−1)

m :

Meter (m)

MJ:

Mega Joule

ms:

Mili second

Nu:

Nusselt

PCS:

Phase change slurry

R :

Thermal resistance (K W−1)

Re:

Reynolds

s :

Second

t :

Time (s)

wt.:

By mass

°C:

Degree of centigrade

\(\eta\) :

Efficiency (%)

\(\upmu{\text{m}}\) :

Micrometer

References

  1. Sadeghi HM, Babayan M, Chamkha A. Investigation of using multi-layer PCMs in the tubular heat exchanger with periodic heat transfer boundary condition. Int J Heat Mass Transf. 2020;147:118970.

    CAS  Google Scholar 

  2. Hoseinzadeh S, et al. Numerical investigation of rectangular thermal energy storage units with multiple phase change materials. J Mol Liq. 2018;271:655–60.

    CAS  Google Scholar 

  3. Sharifi N, Bergman TL, Faghri A. Enhancement of PCM melting in enclosures with horizontally-finned internal surfaces. Int J Heat Mass Transf. 2011;54(19–20):4182–92.

    CAS  Google Scholar 

  4. Jahangiri A, Ahmadi O. Numerical investigation of enhancement in melting process of PCM by using internal fins. J Therm Anal Calorim. 2019;137(6):2073–80.

    CAS  Google Scholar 

  5. Li F, et al. Numerical study for nanofluid behavior inside a storage finned enclosure involving melting process. J Mol Liq. 2020;297:111939.

    CAS  Google Scholar 

  6. Deng Z, et al. Melting behaviors of PCM in porous metal foam characterized by fractal geometry. Int J Heat Mass Transf. 2017;113:1031–42.

    CAS  Google Scholar 

  7. Sheikholeslami M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J Mol Liq. 2018;263:303–15.

    CAS  Google Scholar 

  8. Ghalambaz M, et al. MHD phase change heat transfer in an inclined enclosure: effect of a magnetic field and cavity inclination. Numer Heat Transf Part A Appl. 2017;71(1):91–109.

    CAS  Google Scholar 

  9. Doostani A, Ghalambaz M, Chamkha AJ. MHD natural convection phase-change heat transfer in a cavity: analysis of the magnetic field effect. J Braz Soc Mech Sci Eng. 2017;39(7):2831–46.

    CAS  Google Scholar 

  10. Khan Z, Khan ZA, Sewell P. Heat transfer evaluation of metal oxides based nano-PCMs for latent heat storage system application. Int J Heat Mass Transf. 2019;144:118619.

    CAS  Google Scholar 

  11. Jeyaseelan TR, Azhagesan N, Pethurajan V. Thermal characterization of NaNO3/KNO3 with different concentrations of Al2O3 and TiO2 nanoparticles. J Therm Anal Calorim. 2019;136(1):235–42.

    Google Scholar 

  12. Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.

    CAS  Google Scholar 

  13. Li Z, et al. Effect of dispersing nanoparticles on solidification process in existence of Lorenz forces in a permeable media. J Mol Liq. 2018;266:181–93.

    CAS  Google Scholar 

  14. Ghalambaz M, et al. Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles. Int J Mech Sci. 2017;134:85–97.

    Google Scholar 

  15. Benkhedda M, et al. Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08836-y.

    Article  Google Scholar 

  16. Kasaeian A, et al. Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int J Heat Mass Transf. 2017;107:778–91.

    CAS  Google Scholar 

  17. Boukani NH, Dadvand A, Chamkha AJ. Melting of a nano-enhanced phase change material (NePCM) in partially-filled horizontal elliptical capsules with different aspect ratios. Int J Mech Sci. 2018;149:164–77.

    Google Scholar 

  18. Serrano A, et al. Reducing heat loss through the building envelope by using polyurethane foams containing thermoregulating microcapsules. Appl Therml Eng. 2016;103:226–32.

    CAS  Google Scholar 

  19. Su JF, Wang LX, Ren L. Preparation and characterization of double-MF shell microPCMs used in building materials. J Appl Polym Sci. 2005;97(5):1755–62.

    CAS  Google Scholar 

  20. Gao F, Wang X, Wu D. Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide. Solar Energy Mater Solar Cells. 2017;168:146–64.

    Google Scholar 

  21. Hawlader M, Uddin M, Zhu HJ. Preparation and evaluation of a novel solar storage material: microencapsulated paraffin. Int J Solar Energy. 2000;20(4):227–38.

    Google Scholar 

  22. Nagano, K. Development of the PCM floor supply air-conditioning system. In: Thermal energy storage for sustainable energy consumption. 2007, Springer. p. 367–373.

  23. Colla, L., et al. Nano-PCMs for passive electronic cooling applications. In: Journal of physics: conference series. 2015. IOP Publishing.

  24. Hoang H, et al. Heat transfer study of submicro-encapsulated PCM plate for food packaging application. Int J Refrig. 2015;52:151–60.

    CAS  Google Scholar 

  25. Izquierdo-Barrientos M, et al. A numerical study of external building walls containing phase change materials (PCM). Appl Therm Eng. 2012;47:73–85.

    Google Scholar 

  26. Socaciu L, et al. PCM selection using AHP method to maintain thermal comfort of the vehicle occupants. Energy Procedia. 2016;85:489–97.

    Google Scholar 

  27. Jamekhorshid A, Sadrameli S, Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev. 2014;31:531–42.

    CAS  Google Scholar 

  28. Liu C, et al. Review on nanoencapsulated phase change materials: preparation, characterization and heat transfer enhancement. Nano Energy. 2015;13:814–26.

    CAS  Google Scholar 

  29. Karthikeyan M, Ramachandran T. Review of thermal energy storage of micro-and nanoencapsulated phase change materials. Maters Res Innov. 2014;18(7):541–54.

    CAS  Google Scholar 

  30. Salunkhe PB, Shembekar PS. A review on effect of phase change material encapsulation on the thermal performance of a system. Renew Sustain Energy Rev. 2012;16(8):5603–16.

    CAS  Google Scholar 

  31. Fang Y, et al. Preparation and characterization of novel nanoencapsulated phase change materials. Energy Convers Manag. 2008;49(12):3704–7.

    CAS  Google Scholar 

  32. Zhang Z, et al. Thermophysical properties of some fatty acids/surfactants as phase change slurries for thermal energy storage. J Chem Eng Data. 2015;60(8):2495–501.

    CAS  Google Scholar 

  33. Giro-Paloma J, et al. Comparison of phase change slurries: physicochemical and thermal properties. Energy. 2015;87:223–7.

    CAS  Google Scholar 

  34. Shirin-Abadi AR, Mahdavian AR, Khoee S. New approach for the elucidation of PCM nanocapsules through miniemulsion polymerization with an acrylic shell. Macromolecules. 2011;44(18):7405–14.

    CAS  Google Scholar 

  35. Sharma A, et al. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13(2):318–45.

    CAS  Google Scholar 

  36. Alvarado J, et al. Characterization of supercooling suppression of microencapsulated phase change material by using DSC. J Therm Anal Calorim. 2006;86(2):505–9.

    CAS  Google Scholar 

  37. Zhang G, Zhao C. Thermal and rheological properties of microencapsulated phase change materials. Renew Energy. 2011;36(11):2959–66.

    CAS  Google Scholar 

  38. Delgado M, et al. Experimental analysis of the influence of microcapsule mass fraction on the thermal and rheological behavior of a PCM slurry. Appl Therm Eng. 2014;63(1):11–22.

    CAS  Google Scholar 

  39. Li W, et al. Nano-encapsulated phase change material slurry (Nano-PCMS) saturated in metal foam: a new stable and efficient strategy for passive thermal management. Energy. 2018;165:743–51.

    CAS  Google Scholar 

  40. Li W, et al. Microencapsulated phase change material (MEPCM) saturated in metal foam as an efficient hybrid PCM for passive thermal management: a numerical and experimental study. Appl Therm Eng. 2019;146:413–21.

    Google Scholar 

  41. Yuan K, et al. Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance. Solar Energy Mater Solar Cells. 2015;143:29–37.

    CAS  Google Scholar 

  42. Delgado M, et al. Experimental analysis of a microencapsulated PCM slurry as thermal storage system and as heat transfer fluid in laminar flow. Appl Therm Eng. 2012;36:370–7.

    CAS  Google Scholar 

  43. Wang X, et al. Heat transfer of microencapsulated PCM slurry flow in a circular tube. AIChE J. 2008;54(4):1110–20.

    CAS  Google Scholar 

  44. Yamagishi Y, et al. Characteristics of microencapsulated PCM slurry as a heat-transfer fluid. AIChE J. 1999;45(4):696–707.

    CAS  Google Scholar 

  45. Zhang G, et al. An experimental investigation of forced convection heat transfer with novel microencapsulated phase change material slurries in a circular tube under constant heat flux. Energy Convers Manag. 2018;171:699–709.

    CAS  Google Scholar 

  46. Hashimoto S, Kurazono K, Yamauchi T. Thermal–hydraulic characteristics of ethylene glycol aqueous solutions containing microencapsulated paraffin. Exp Therm Fluid Sci. 2018;99:297–303.

    CAS  Google Scholar 

  47. Yang J, Hutchins D, Zhao C. Melting behaviour of differently-sized micro-particles in a pipe flow under constant heat flux. Int Commun Heat Mass Transf. 2014;53:64–70.

    Google Scholar 

  48. Liu L, Zhu C, Fang G. Numerical evaluation on the flow and heat transfer characteristics of microencapsulated phase change slurry flowing in a circular tube. Appl Therm Eng. 2018;144:845–53.

    Google Scholar 

  49. Taherian H, et al. Fluid flow and heat transfer characteristics of microencapsulated phase change material slurry in turbulent flow. J Heat Transf. 2014;136(6):061704.

    Google Scholar 

  50. Li L, et al. Preparation and flow resistance characteristics of novel microcapsule slurries for engine cooling system. Energy Convers Manag. 2017;135:170–7.

    CAS  Google Scholar 

  51. Chen B, et al. An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux. Exp Therm Fluid Sci. 2008;32(8):1638–46.

    CAS  Google Scholar 

  52. Sabbah R, Seyed-Yagoobi J, Al-Hallaj S. Heat transfer characteristics of liquid flow with micro-encapsulated phase change material: numerical study. J Heat Transf. 2011;133(12):121702.

    Google Scholar 

  53. Sabbah R, Seyed-Yagoobi J, Al-Hallaj S. Heat transfer characteristics of liquid flow with micro-encapsulated phase change material: experimental study. J Heat Transf. 2012;134(4):044501.

    Google Scholar 

  54. Scott DA, Lamoureux A, Baliga BR. Modeling and simulations of laminar mixed convection in a vertical pipe conveying slurries of a microencapsulated phase-change material in distilled water. J Heat Transf. 2013;135(1):011013.

    Google Scholar 

  55. Zeng R, et al. Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux. Appl Energy. 2009;86(12):2661–70.

    CAS  Google Scholar 

  56. Wang Y, Chen Z, Ling X. An experimental study of the latent functionally thermal fluid with micro-encapsulated phase change material particles flowing in microchannels. Appl Therm Eng. 2016;105:209–16.

    CAS  Google Scholar 

  57. Dammel F, Stephan P. Heat transfer to suspensions of microencapsulated phase change material flowing through minichannels. J Heat Transf. 2012;134(2):020907.

    Google Scholar 

  58. Sinha-Ray S, et al. Flow of suspensions of carbon nanotubes carrying phase change materials through microchannels and heat transfer enhancement. Lab Chip. 2014;14(3):494–508.

    CAS  PubMed  Google Scholar 

  59. Praveen B, Suresh S. Thermal performance of micro-encapsulated PCM with LMA thermal percolation in TES based heat sink application. Energy Convers Manag. 2019;185:75–86.

    CAS  Google Scholar 

  60. Khakpour Y, Seyed-Yagoobi J. Evaporating liquid film flow in the presence of micro-encapsulated phase change materials: a numerical study. J Heat Transf. 2015;137(2):021501.

    Google Scholar 

  61. Bai F, et al. Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate. Energy. 2019;167:561–74.

    CAS  Google Scholar 

  62. Lian C, et al. Numerical investigation on the performance of microencapsulated phase change material suspension applied to liquid cold plates. Numer Heat Transf Part A Appl. 2019;75(5):342–58.

    Google Scholar 

  63. Hassanipour F, Lage JL. New bio-inspired, multiphase forced convection cooling by abs plastic or encapsulated paraffin beads. J Heat Transf. 2010;132(7):074501.

    Google Scholar 

  64. Joseph M, Sajith V. An investigation on heat transfer performance of polystyrene encapsulated n-octadecane based nanofluid in square channel. Appl Therm Eng. 2019;147:756–69.

    CAS  Google Scholar 

  65. Howard JA, Walsh PA. An experimental investigation of heat transfer enhancement mechanisms in microencapsulated phase-change material slurry flows. Heat Transf Eng. 2013;34(2–3):223–34.

    CAS  Google Scholar 

  66. Kuravi S, et al. Numerical investigation of flow and heat transfer performance of nano-encapsulated phase change material slurry in microchannels. J Heat Transf. 2009;131(6):062901.

    Google Scholar 

  67. Petrovic A, Lelea D, Laza I. The comparative analysis on using the NEPCM materials and nanofluids for microchannel cooling solutions. Int Commun Heat Mass Transf. 2016;79:39–45.

    CAS  Google Scholar 

  68. Ho C-J, Chen W-C, Yan W-M. Experimental study on cooling performance of minichannel heat sink using water-based MEPCM particles. Int Commu Heat Mass Transf. 2013;48:67–72.

    CAS  Google Scholar 

  69. Ho C-J, et al. Thermal performance of water-based suspensions of phase change nanocapsules in a natural circulation loop with a mini-channel heat sink and heat source. Appl Therm Eng. 2014;64(1–2):376–84.

    CAS  Google Scholar 

  70. Ho C-J, et al. Efficacy of divergent minichannels on cooling performance of heat sinks with water-based MEPCM suspensions. Int J Therm Sci. 2018;130:333–46.

    CAS  Google Scholar 

  71. Cao, F., et al. Synthesis and heat transfer performance of phase change microcapsule enhanced thermal fluids. J Heat Transf, 2015. 137(9).

  72. Sabbaghi S, Mehravar S. Effect of using nano encapsulated phase change material on thermal performance of micro heat sink. Int J Nanosci Nanotechnol. 2015;11(1):33–8.

    Google Scholar 

  73. Rajabifar B. Enhancement of the performance of a double layered microchannel heatsink using PCM slurry and nanofluid coolants. Int J Heat Mass Transf. 2015;88:627–35.

    CAS  Google Scholar 

  74. Far BR, et al. Effects of pin tip-clearance on the performance of an enhanced microchannel heat sink with oblique fins and phase change material slurry. Int J Heat Mass Transf. 2015;83:136–45.

    Google Scholar 

  75. Sabbah R, Farid MM, Al-Hallaj S. Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study. Appl Therm Eng. 2009;29(2–3):445–54.

    CAS  Google Scholar 

  76. Seyf HR, et al. Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential impingement. Int J Heat Mass Transf. 2013;56(1–2):561–73.

    CAS  Google Scholar 

  77. Kong M-S, et al. Thermal performance of microencapsulated phase change material slurry in a coil heat exchanger. J Heat Transf. 2015;137(7):071801.

    Google Scholar 

  78. Doruk S, et al. Heat transfer performance of water and Nanoencapsulated n-nonadecane based Nanofluids in a double pipe heat exchanger. Heat Mass Transf. 2017;53(12):3399–408.

    CAS  Google Scholar 

  79. Hasan MI. Numerical investigation of counter flow microchannel heat exchanger with MEPCM suspension. Appl Therm Eng. 2011;31(6–7):1068–75.

    CAS  Google Scholar 

  80. Kurnia JC, et al. Heat transfer in coiled square tubes for laminar flow of slurry of microencapsulated phase change material. Heat Transf Eng. 2013;34(11–12):994–1007.

    CAS  Google Scholar 

  81. Roberts NS, et al. Efficacy of using slurry of metal-coated microencapsulated PCM for cooling in a micro-channel heat exchanger. Appl Therm Eng. 2017;122:11–8.

    CAS  Google Scholar 

  82. Wu W, et al. Heat transfer enhancement of PAO in microchannel heat exchanger using nano-encapsulated phase change indium particles. Int J Heat Mass Transf. 2013;58(1–2):348–55.

    CAS  Google Scholar 

  83. Seyf HR, et al. Flow and heat transfer of nanoencapsulated phase change material slurry past a unconfined square cylinder. J Heat Transf. 2014;136(5):051902.

    Google Scholar 

  84. Reza Seyf, H., et al., Flow and heat transfer of nanoencapsulated phase change material slurry past a unconfined square cylinder. J Heat Transf, 2014. 136(5).

  85. Rehman MMU, et al. Numerical study on free-surface jet impingement cooling with nanoencapsulated phase-change material slurry and nanofluid. Int J Heat Mass Transf. 2017;109:312–25.

    Google Scholar 

  86. Wu W, et al. Jet impingement heat transfer using air-laden nanoparticles with encapsulated phase change materials. J Heat Transf. 2013;135(5):052202.

    Google Scholar 

  87. Hong, F., et al. Confined jet array impingement cooling using NEPCM nanofluids. In: ASME 2016 5th international conference on micro/nanoscale heat and mass transfer. 2016. American Society of Mechanical Engineers Digital Collection.

  88. Zhang C, et al. Confined jet array impingement cooling with spent flow distraction using NEPCM slurry. Int Commun Heat Mass Transf. 2016;77:140–7.

    CAS  Google Scholar 

  89. Wang X, Niu J, Van Paassen A. Raising evaporative cooling potentials using combined cooled ceiling and MPCM slurry storage. Energy Build. 2008;40(9):1691–8.

    Google Scholar 

  90. Wang X, Niu J. Performance of cooled-ceiling operating with MPCM slurry. Energy Convers Manag. 2009;50(3):583–91.

    CAS  Google Scholar 

  91. Zhang S, Niu J. Cooling performance of nocturnal radiative cooling combined with microencapsulated phase change material (MPCM) slurry storage. Energy Build. 2012;54:122–30.

    Google Scholar 

  92. Liu L, et al. Performance evaluation of a novel solar photovoltaic–thermal collector with dual channel using microencapsulated phase change slurry as cooling fluid. Energy Convers Manag. 2017;145:30–40.

    CAS  Google Scholar 

  93. Yu Q, et al. Numerical study on energy and exergy performances of a microencapsulated phase change material slurry based photovoltaic/thermal module. Energy Convers Manag. 2019;183:708–20.

    CAS  Google Scholar 

  94. Liu L, et al. Numerical study of a novel miniature compound parabolic concentrating photovoltaic/thermal collector with microencapsulated phase change slurry. Energy Convers Manag. 2017;153:106–14.

    CAS  Google Scholar 

  95. Qiu Z, et al. Theoretical investigation of the energy performance of a novel MPCM (microencapsulated phase change material) slurry based PV/T module. Energy. 2015;87:686–98.

    Google Scholar 

  96. Qiu Z, et al. Experimental investigation of the energy performance of a novel micro-encapsulated phase change material (MPCM) slurry based PV/T system. Appl Energy. 2016;165:260–71.

    Google Scholar 

  97. Serale G, Fabrizio E, Perino M. Design of a low-temperature solar heating system based on a slurry phase change material (PCS). Energy Build. 2015;106:44–58.

    Google Scholar 

  98. Serale G, et al. Potentialities of a low temperature solar heating system based on slurry phase change materials (PCS). Energy Procedia. 2014;62:355–63.

    Google Scholar 

  99. Ma F, Zhang P. Performance investigation of the direct absorption solar collector based on phase change slurry. Appl Therm Eng. 2019;162:114244.

    Google Scholar 

  100. Wang Z, et al. Photo-thermal performance evaluation on MWCNTs-dispersed microencapsulated PCM slurries for direct absorption solar collectors. J Energy Storage. 2019;26:100793.

    Google Scholar 

  101. Liu J, et al. Preparation of graphite nanoparticles-modified phase change microcapsules and their dispersed slurry for direct absorption solar collectors. Solar Energy Mater Solar Cells. 2017;159:159–66.

    CAS  Google Scholar 

  102. Kong M, et al. Field evaluation of microencapsulated phase change material slurry in ground source heat pump systems. Energy. 2017;122:691–700.

    CAS  Google Scholar 

  103. Ghalambaz M, Chamkha AJ, Wen D. Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a cavity. Int J Heat Mass Transf. 2019;138:738–49.

    Google Scholar 

  104. Diaconu BM, Varga S, Oliveira AC. Experimental assessment of heat storage properties and heat transfer characteristics of a phase change material slurry for air conditioning applications. Appl Energy. 2010;87(2):620–8.

    CAS  Google Scholar 

  105. Zhang Y, et al. Experimental evaluation on natural convection heat transfer of microencapsulated phase change materials slurry in a rectangular heat storage tank. Energy Convers Manag. 2012;59:33–9.

    CAS  Google Scholar 

  106. Vorbeck L, et al. Pilot application of phase change slurry in a 5 m3 storage. Appl Energy. 2013;109:538–43.

    Google Scholar 

  107. Allouche Y, et al. Experimental determination of the heat transfer and cold storage characteristics of a microencapsulated phase change material in a horizontal tank. Energy Convers Manag. 2015;94:275–85.

    Google Scholar 

  108. Diaconu BM, Varga S, Oliveira AC. Experimental study of natural convection heat transfer in a microencapsulated phase change material slurry. Energy. 2010;35(6):2688–93.

    CAS  Google Scholar 

  109. Wang L, et al. Experimental study on natural convective heat transfer of tube immersed in microencapsulated phase change material suspensions. Appl Therm Eng. 2016;99:583–90.

    CAS  Google Scholar 

  110. Heydarian R, et al. Experimental investigation of paraffin nano-encapsulated phase change material on heat transfer enhancement of pulsating heat pipe. J Therm Anal Calorim. 2019;137(5):1603–13.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Behshad Shafii or Mohammad Hossein Ahmadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoghaei, M.S., Mahmoudian, A., Mohammadi, O. et al. A review on the applications of micro-/nano-encapsulated phase change material slurry in heat transfer and thermal storage systems. J Therm Anal Calorim 145, 245–268 (2021). https://doi.org/10.1007/s10973-020-09697-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09697-6

Keywords

Navigation